#include "license.readme" #include #include #include #include #include "affentry.hxx" #if !defined(_MSC_VER) using namespace std; #endif extern char * mystrdup(const char * s); extern char * myrevstrdup(const char * s); PfxEntry::PfxEntry(AffixMgr* pmgr, affentry* dp) { // register affix manager pmyMgr = pmgr; // set up its intial values achar = dp->achar; // char flag strip = dp->strip; // string to strip appnd = dp->appnd; // string to append stripl = dp->stripl; // length of strip string appndl = dp->appndl; // length of append string numconds = dp->numconds; // number of conditions to match xpflg = dp->xpflg; // cross product flag // then copy over all of the conditions memcpy(&conds[0],&dp->conds[0],SETSIZE*sizeof(conds[0])); next = NULL; nextne = NULL; nexteq = NULL; } PfxEntry::~PfxEntry() { achar = '\0'; if (appnd) free(appnd); if (strip)free(strip); pmyMgr = NULL; appnd = NULL; strip = NULL; } // add prefix to this word assuming conditions hold char * PfxEntry::add(const char * word, int len) { int cond; char tword[MAXWORDLEN+1]; /* make sure all conditions match */ if ((len > stripl) && (len >= numconds)) { unsigned char * cp = (unsigned char *) word; for (cond = 0; cond < numconds; cond++) { if ((conds[*cp++] & (1 << cond)) == 0) break; } if (cond >= numconds) { /* we have a match so add prefix */ int tlen = 0; if (appndl) { strcpy(tword,appnd); tlen += appndl; } char * pp = tword + tlen; strcpy(pp, (word + stripl)); return mystrdup(tword); } } return NULL; } // check if this prefix entry matches struct hentry * PfxEntry::check(const char * word, int len) { int cond; // condition number being examined int tmpl; // length of tmpword struct hentry * he; // hash entry of root word or NULL unsigned char * cp; char tmpword[MAXWORDLEN+1]; // on entry prefix is 0 length or already matches the beginning of the word. // So if the remaining root word has positive length // and if there are enough chars in root word and added back strip chars // to meet the number of characters conditions, then test it tmpl = len - appndl; if ((tmpl > 0) && (tmpl + stripl >= numconds)) { // generate new root word by removing prefix and adding // back any characters that would have been stripped if (stripl) strcpy (tmpword, strip); strcpy ((tmpword + stripl), (word + appndl)); // now make sure all of the conditions on characters // are met. Please see the appendix at the end of // this file for more info on exactly what is being // tested cp = (unsigned char *)tmpword; for (cond = 0; cond < numconds; cond++) { if ((conds[*cp++] & (1 << cond)) == 0) break; } // if all conditions are met then check if resulting // root word in the dictionary if (cond >= numconds) { tmpl += stripl; if ((he = pmyMgr->lookup(tmpword)) != NULL) { if (TESTAFF(he->astr, achar, he->alen)) return he; } // prefix matched but no root word was found // if XPRODUCT is allowed, try again but now // ross checked combined with a suffix if (xpflg & XPRODUCT) { he = pmyMgr->suffix_check(tmpword, tmpl, XPRODUCT, (AffEntry *)this); if (he) return he; } } } return NULL; } SfxEntry::SfxEntry(AffixMgr * pmgr, affentry* dp) { // register affix manager pmyMgr = pmgr; // set up its intial values achar = dp->achar; // char flag strip = dp->strip; // string to strip appnd = dp->appnd; // string to append stripl = dp->stripl; // length of strip string appndl = dp->appndl; // length of append string numconds = dp->numconds; // number of conditions to match xpflg = dp->xpflg; // cross product flag // then copy over all of the conditions memcpy(&conds[0],&dp->conds[0],SETSIZE*sizeof(conds[0])); rappnd = myrevstrdup(appnd); } SfxEntry::~SfxEntry() { achar = '\0'; if (appnd) free(appnd); if (rappnd) free(rappnd); if (strip) free(strip); pmyMgr = NULL; appnd = NULL; strip = NULL; } // add suffix to this word assuming conditions hold char * SfxEntry::add(const char * word, int len) { int cond; char tword[MAXWORDLEN+1]; /* make sure all conditions match */ if ((len > stripl) && (len >= numconds)) { unsigned char * cp = (unsigned char *) (word + len); for (cond = numconds; --cond >=0; ) { if ((conds[*--cp] & (1 << cond)) == 0) break; } if (cond < 0) { /* we have a match so add suffix */ strcpy(tword,word); int tlen = len; if (stripl) { tlen -= stripl; } char * pp = (tword + tlen); if (appndl) { strcpy(pp,appnd); tlen += appndl; } else *pp = '\0'; return mystrdup(tword); } } return NULL; } // see if this suffix is present in the word struct hentry * SfxEntry::check(const char * word, int len, int optflags, AffEntry* ppfx) { int tmpl; // length of tmpword int cond; // condition beng examined struct hentry * he; // hash entry pointer unsigned char * cp; char tmpword[MAXWORDLEN+1]; PfxEntry* ep = (PfxEntry *) ppfx; // if this suffix is being cross checked with a prefix // but it does not support cross products skip it if ((optflags & XPRODUCT) != 0 && (xpflg & XPRODUCT) == 0) return NULL; // upon entry suffix is 0 length or already matches the end of the word. // So if the remaining root word has positive length // and if there are enough chars in root word and added back strip chars // to meet the number of characters conditions, then test it tmpl = len - appndl; if ((tmpl > 0) && (tmpl + stripl >= numconds)) { // generate new root word by removing suffix and adding // back any characters that would have been stripped or // or null terminating the shorter string strcpy (tmpword, word); cp = (unsigned char *)(tmpword + tmpl); if (stripl) { strcpy ((char *)cp, strip); tmpl += stripl; cp = (unsigned char *)(tmpword + tmpl); } else *cp = '\0'; // now make sure all of the conditions on characters // are met. Please see the appendix at the end of // this file for more info on exactly what is being // tested for (cond = numconds; --cond >= 0; ) { if ((conds[*--cp] & (1 << cond)) == 0) break; } // if all conditions are met then check if resulting // root word in the dictionary if (cond < 0) { if ((he = pmyMgr->lookup(tmpword)) != NULL) { if (TESTAFF(he->astr, achar , he->alen) && ((optflags & XPRODUCT) == 0 || TESTAFF(he->astr, ep->getFlag(), he->alen))) return he; } } } return NULL; } #if 0 Appendix: Understanding Affix Code An affix is either a prefix or a suffix attached to root words to make other words. Basically a Prefix or a Suffix is set of AffEntry objects which store information about the prefix or suffix along with supporting routines to check if a word has a particular prefix or suffix or a combination. The structure affentry is defined as follows: struct affentry { unsigned char achar; // char used to represent the affix char * strip; // string to strip before adding affix char * appnd; // the affix string to add short stripl; // length of the strip string short appndl; // length of the affix string short numconds; // the number of conditions that must be met short xpflg; // flag: XPRODUCT- combine both prefix and suffix char conds[SETSIZE]; // array which encodes the conditions to be met }; Here is a suffix borrowed from the en_US.aff file. This file is whitespace delimited. SFX D Y 4 SFX D 0 e d SFX D y ied [^aeiou]y SFX D 0 ed [^ey] SFX D 0 ed [aeiou]y This information can be interpreted as follows: In the first line has 4 fields Field ----- 1 SFX - indicates this is a suffix 2 D - is the name of the character flag which represents this suffix 3 Y - indicates it can be combined with prefixes (cross product) 4 4 - indicates that sequence of 4 affentry structures are needed to properly store the affix information The remaining lines describe the unique information for the 4 SfxEntry objects that make up this affix. Each line can be interpreted as follows: (note fields 1 and 2 are as a check against line 1 info) Field ----- 1 SFX - indicates this is a suffix 2 D - is the name of the character flag for this affix 3 y - the string of chars to strip off before adding affix (a 0 here indicates the NULL string) 4 ied - the string of affix characters to add 5 [^aeiou]y - the conditions which must be met before the affix can be applied Field 5 is interesting. Since this is a suffix, field 5 tells us that there are 2 conditions that must be met. The first condition is that the next to the last character in the word must *NOT* be any of the following "a", "e", "i", "o" or "u". The second condition is that the last character of the word must end in "y". So how can we encode this information concisely and be able to test for both conditions in a fast manner? The answer is found but studying the wonderful ispell code of Geoff Kuenning, et.al. (now available under a normal BSD license). If we set up a conds array of 256 bytes indexed (0 to 255) and access it using a character (cast to an unsigned char) of a string, we have 8 bits of information we can store about that character. Specifically we could use each bit to say if that character is allowed in any of the last (or first for prefixes) 8 characters of the word. Basically, each character at one end of the word (up to the number of conditions) is used to index into the conds array and the resulting value found there says whether the that character is valid for a specific character position in the word. For prefixes, it does this by setting bit 0 if that char is valid in the first position, bit 1 if valid in the second position, and so on. If a bit is not set, then that char is not valid for that postion in the word. If working with suffixes bit 0 is used for the character closest to the front, bit 1 for the next character towards the end, ..., with bit numconds-1 representing the last char at the end of the string. Note: since entries in the conds[] are 8 bits, only 8 conditions (read that only 8 character positions) can be examined at one end of a word (the beginning for prefixes and the end for suffixes. So to make this clearer, lets encode the conds array values for the first two affentries for the suffix D described earlier. For the first affentry: numconds = 1 (only examine the last character) conds['e'] = (1 << 0) (the word must end in an E) all others are all 0 For the second affentry: numconds = 2 (only examine the last two characters) conds[X] = conds[X] | (1 << 0) (aeiou are not allowed) where X is all characters *but* a, e, i, o, or u conds['y'] = (1 << 1) (the last char must be a y) all other bits for all other entries in the conds array are zero #endif