This repository has been archived on 2024-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
deb-mbse/lib/diesel.c
2002-03-29 22:58:53 +00:00

1933 lines
44 KiB
C

/*****************************************************************************
*
* $Id$
* Purpose ...............: TURBODIESEL Macro language
*
*****************************************************************************
* Copyright (C) 1997-2002
*
* Michiel Broek FIDO: 2:280/2802
* Beekmansbos 10
* 1971 BV IJmuiden
* the Netherlands
*
* This file is part of MBSE BBS.
*
* This BBS is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* MBSE BBS is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MBSE BBS; see the file COPYING. If not, write to the Free
* Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*****************************************************************************/
/*
T U R B O D I E S E L
Template-based Uncomplicated Report-Building Oriented Dumb
Interpretively Evaluated String Expression Language
This is a modified version of diesel language. Diesel is a interpreted
macro language, used in AutoCAD and released to public domain by AutoDesk.
Modified version by Redy Rodriguez, for use in mbsebbs. Original diesel
language can be found at http://www.fournilab.ch/diesel.
This "Dumb Interpretively Executed String Expression Language" is the
kernel of a macro language you can customise by adding C code and
embedding it into your program.
It is short, written in portable C, and is readily integrated into any
program. It is useful primarily to programs which need a very rudimentary
macro expansion facility without the complexity of a full language such as
Lisp or FORTH.
DIESEL copies its input directly to the output until a macro character,
"@" or quoted string is encountered. Quoted strings may be used to
suppress evaluation of sequences of characters which would otherwise be
interpreted as macros. Quote marks may be included in quoted strings by
two adjacent quote marks. For example:
"@(if,1,True,False)="""@(if,1,True,False)""""
Status retrieval, computation, and display are performed by DIESEL
functions. The available functions are as follows. User-defined
functions are not implemented; what you see is all you've got. Naturally,
if you embed DIESEL in your application, you'll add functions that provide
access to information and actions within your own program. DIESEL's
arithmetic functions accept either floating point or integer arguments,
and perform all calculations in floating point.
TURBODIESEL facilities
----------------------
If a line begin with # then will be not evaluated, and any output is done.
If a line begin with @! any output is done, but evaluation is performed.
If a line begin with @{<expresion>} produces output only if expression is
TRUE (Any non-zero numeric value).
To easily format output, you can use one-char variable names as follow:
@A will be replaced by result of evaluate @(GETVAR,A).
@A_____ will be replaced by result of evaluate @(GETVAR,A) truncated or
padded with spaces to complete same lenght of '@A_____' (7 in that case).
You can use > or < to especify alignement rigth or left:
@A_____> @A_____<
TURBODIESEL String Functions
----------------------------
@(+,<val1>,<val2>,...<valn>)
The sum of the numbers <val1>, <val2>, ...<valn> is returned.
@(-,<val1>,<val2>,...<valn>)
The result of subtracting the numbers <val2> through <valn> from
<val1> is returned.
@(*,<val1>,<val2>,...<valn>)
The result of multiplying the numbers <val1>,<val2>,...<valn> is
returned.
@(/,<val1>,<val2>,...<valn>)
The result of dividing the number <val1> by <val2>,... <valn> is
returned.
@(=,<val1>,<val2>)
If the numbers <val1> and <val2> are equal 1 is returned,
otherwise 0 is returned.
@(<,<val1>,<val2>)
If the number <val1> is less than <val2> 1 is returned, otherwise
0 is returned.
@(>,<val1>,<val2>)
If the number <val1> is greater than <val2> 1 is returned,
otherwise 0 is returned.
@(!=,<val1>,<val2>)
If the numbers <val1> and <val2> are not equal 1 is returned,
otherwise 0 is returned.
@(<=,<val1>,<val2>)
If the number <val1> is less than or equal to <val2> 1 is
returned, otherwise 0 is returned.
@(>=,<val1>,<val2>)
If the number <val1> is greater than or equal to <val2> 1 is
returned, otherwise 0 is returned.
@(AND,<val1>,<val2>,...<valn>)
The bitwise logical AND of the integers <val1> through <valn> is
returned.
@(EQ,<val1>,<val2>)
If the strings <val1> and <val2> are identical 1 is returned,
otherwise 0.
@(EVAL,<str>)
The string <str> is passed to the DIESEL evaluator and the result
of evaluating it is returned.
@(FIX,<value>)
The real number <value> is truncated to an integer by discarding
any fractional part.
@(IF,<expr>,<dotrue>,<dofalse>)
If <expr> is nonzero, <dotrue> is evaluated and returned.
Otherwise, <dofalse> is evaluated and returned. Note that the
branch not chosen by <expr> is not evaluated.
@(INDEX,<which>,<string>)
<string> is assumed to contain one or more values delimited by the
macro argument separator character, comma. <which> selects one of
these values to be extracted, with the first item numbered zero.
* @(LOWER,<string>)
The <string> is returned converted to lower case according to the
rules of the current locale.
@(NTH,<which>,<arg0>,<arg1>,<argN>)
Evaluates and returns the argument selected by <which>. If
<which> is 0, <arg0> is returned, and so on. Note the difference
between @(NTH) and @(INDEX); @(NTH) returns one of a series of
arguments to the function while @(INDEX) extracts a value from a
comma-delimited string passed as a single argument. Arguments not
selected by <which> are not evaluated.
@(OR,<val1>,<val2>,...<valn>)
The bitwise logical OR of the integers <val1> through <valn> is
returned.
* @(STRCMP,<str1>,<str2>)
Compare strings and returns -1 if <str1> is less than <Str2>, 0 if
both are equals, or 1 if <str1> is greater than <str2> .
@(STRFILL,<string>,<ncopies>)
Returns the result of concatenating <ncopies> of <string>.
@(STRLEN,<string>)
Returns the length of <string> in characters.
* @(STRSTR,<str1>,<str2>)
Find first apparition of <str2> in <str1>, and return the position
or 0 if not found.
@(SUBSTR,<string>,<start>,<length>)
Returns the substring of <string> starting at character <start>
and extending for <length> characters. Characters in the string
are numbered from 1. If <length> is omitted, the entire remaining
length of the string is returned.
@(UPPER,<string>)
The <string> is returned converted to upper case according to the
rules of the current locale.
@(XOR,<val1>,<val2>,...<valn>)
The bitwise logical XOR of the integers <val1> through <valn> is
returned.
Variable Extensions
-------------------
The base-line DIESEL includes no user-defined variables. This allows
DIESEL to avoid allocating any local memory and renders it totally
reentrant. If you compile DIESEL with the tag VARIABLES defined, the
following additional functions are included which provide variable
definition and access. Note that these functions call malloc() and
strdup() and thus consume heap storage.
Variable names are case sensitive.
If you want easily format output you must use one-char variable names
then you can format output as @V_____, @X_____< or @k___>. See above.
@(GETVAR,varname)
Returns the value stored in <varname>. If no variable with
the name <varname> exists, a bad argument error is reported.
@(SETVAR,varname,value)
Stores the string <value> into <varname>. If no variable
called <varname> exists, a new variable is created.
* @(CLEAR)
Clear all variables.
Unix Extensions
---------------
If you compile DIESEL with the tag UNIXTENSIONS defined, the following
additional functions will be available:
@(GETENV,varname)
Returns the variable <varname> from the environment. If no such
variable is defined, returns the null string.
@(TIME)
Returns the current time in Unix fashion, as the number of seconds
elapsed since 00:00:00 GMT January 1, 1970.
@(EDTIME,<time>,<picture>)
Edit the Unix time <time> to format <picture>. If <time> is 0,
the current date and time is edited (this is just shorthand for
the equivalent "@(EDTIME,@(TIME),<picture>)".).
Assume the date is: Thursday, 2 September 1993 4:53:17
Format phrases:
D 2
DD 02
DDD Thu
DDDD Thursday
M 9
MO 09
MON Sep
MONTH September
YY 93
YYYY 1993
H 4
HH 04
MM 53
SS 17
AM/PM AM
am/pm am
A/P A
a/p a
If any of the "AM/PM" phrases appear in the picture, the "H" and
"HH" phrases will edit the time according to the 12 hour civil
clock (12:00-12:59-1:00-11:59) instead of the 24 hour clock
(00:00-23:59).
TURBODIESEL Mechanics
---------------------
Generally, if you mess something up in a DIESEL expression it's pretty
obvious what went wrong. DIESEL embeds an error indication in the
output stream depending on the nature of the error:
@? Syntax error (usually a missing right parenthesis
or runaway string).
@(<func>,??) Incorrect arguments to <func>.
@(<func>)?? Unknown function <func>.
@++ Output string too long--evaluation truncated.
Using TURBODIESEL
-----------------
You invoke TURBODIESEL within your program by calling:
int status;
char instring[<whatever>], outstring[MAXSTR + 1];
outstring = ParseMacro(instring, &status);
The output from the evaluation will be stored in outstring when
control is returned to your program. If no errors were detected
during evaluation, status will be zero. Otherwise status gives the
character position within instring at which the error was detected.
If an error occurs, TURBODIESEL will include an error diagnostic,
documented above, in outstring.
To set single-char variables you can use:
MacroVars(<string-names>,<string-types>,<value1>,...,<valueN>);
string-names -> Variable names
string-types -> Variable types
(s: string, c: char, d: integer, f: float).
Both strings must be same lenght, and the number of values must
match with lenght and types.
Sample:
MacroVars("ABCDE","sscdf","A String","Another String",'C',5,4.67);
To clear all variables you can use:
MacroClear();
*/
#include "libs.h"
#include "diesel.h"
/* Get(<var>, <structure_type>) allocates a new <structure_type> and
places a pointer to it in <var>. The definition is subtly
different depending on the setting of "lint" in order to get around
the infuriating "possible pointer alignment problem" natter on the
Sun. */
#ifdef lint
#define Get(var, stype) (char *) var = malloc(sizeof(struct stype))
#else
#define Get(var, stype) var = (struct stype *) malloc(sizeof(struct stype))
#endif
struct mfent {
char *fname; /* Function name */
int (*ffunc)(); /* Evaluation function */
};
#define Mfunc(x) static int x( int, char *[], char *);\
static int x( int nargs, char *argv[], char* output)
#ifdef VARIABLES
struct varitem { /* Variable chain item */
struct varitem *vinext; /* Next variable item in chain */
char *viname; /* Variable name */
char *vivalue; /* Variable value */
};
static struct varitem *varlist = NULL; /* Variable chain */
#endif /* VARIABLES */
/* UCASE -- Force letters in string to upper case. */
static void ucase(char *);
static void ucase(char *c)
{
char ch;
while ((ch = *c) != EOS) {
if (islower(ch)) {
*c = toupper(ch);
}
c++;
}
}
/* LCASE -- Force letters in string to upper case. */
static void lcase(char *);
static void lcase(char *c)
{
char ch;
while ((ch = *c) != EOS) {
if (isupper(ch)) {
*c = tolower(ch);
}
c++;
}
}
/* The following functions are included just in case your benighted C
library doesn't include them. */
#ifdef STRCASECMP
/* STRCASECMP -- Compare two strings, case insensitive. */
static int strcasecmp(const char *, const char*);
static int strcasecmp(const char *s1, const char *s2)
{
while ((*s1 != EOS) && (*s2 != EOS) && (toupper(*s1) == toupper(*s2))) {
s1++;
s2++;
}
if (*s1 == EOS) {
return (*s2 == EOS) ? 0 : -1;
}
return (toupper(*s1) > toupper(*s2)) ? 1 : -1;
}
#endif /* STRCASECMP */
#ifdef STRNCASECMP
/* STRNCASECMP -- Compare two strings, length limited, case insensitive. */
static int strncasecmp(const char *, const char *, const int);
static int strncasecmp(const char *s1, const char *s2, const int n)
{
while ((*s1 != EOS) && (*s2 != EOS) &&
(n > 0) && (toupper(*s1) == toupper(*s2))) {
s1++;
s2++;
n--;
}
if (n <= 0) {
return 0;
}
if (*s1 == EOS) {
return (*s2 == EOS) ? 0 : -1;
}
return (toupper(*s1) > toupper(*s2)) ? 1 : -1;
}
#endif /* STRNCASECMP */
/* MLEDREAL -- Edit a double number into the most compact string
representation that doesn't lose significance. */
static void mledreal(double, char *);
static void mledreal(double r, char *edbuf)
{
int sprec;
V sprintf(edbuf, "%.12f", r);
if ((!strchr(edbuf, 'E')) && strchr(edbuf, '.')) {
/* Trim redundant trailing zeroes off the number. */
for (sprec = strlen(edbuf) - 1; sprec > 0; sprec--) {
if (edbuf[sprec] != '0' || edbuf[sprec - 1] == '.')
break;
edbuf[sprec] = EOS;
}
/* Now, if all we're left with is a ".0", drop the decimal
portion entirely. */
if ((strlen(edbuf) > 2) && (strcmp(edbuf + (strlen(edbuf) - 2),
".0") == 0)) {
edbuf[strlen(edbuf) - 2] = EOS;
}
}
}
/* IARG -- Interpret an argument as an integer. The argument is
scanned according to the scanf() "%i" format. TRUE is
returned if a valid integer is scanned, FALSE otherwise. */
static int iarg(char *, int *);
static int iarg(char *argstr, int *intres)
{
char earg[MAXSTR];
if (diesel(argstr, earg) == 0) {
return sscanf(earg, "%i", intres) == 1;
}
return FALSE;
}
#define Iarg(v,n) if (!iarg(argv[(n)], &(v))) return FALSE
/* RARG -- Interpret an argument as a real. The argument is
scanned according to the sscanf() "%lf" format. TRUE is
returned if a valid double is scanned, FALSE otherwise. */
static int rarg(char *, double *);
static int rarg(char *argstr, double *realres)
{
char earg[MAXSTR];
if (diesel(argstr, earg) == 0) {
return sscanf(earg, "%lf", realres) == 1;
}
return FALSE;
}
#define ArgCount(min,max) if (nargs < (min) || nargs > (max)) return FALSE
#define Rarg(v,n) if (!rarg(argv[(n)], &(v))) return FALSE
#define Dsarg(s) char s[MAXSTR] /* Declare string argument */
#define Sarg(v,n) if (diesel(argv[(n)], (v)) != 0) return FALSE
#define Rint(n) V sprintf(output, "%d", (n)); return TRUE/* Return int */
#define Rreal(n) mledreal((n), output); return TRUE /* Return double */
#define Rstr(s) V strcpy(output, (s)); return TRUE /* Return str */
/*
M A C R O I M P L E M E N T I N G F U N C T I O N S
The following functions, each with a header declared with Mfunc(),
implement the macros available to the caller of Diesel. To add a
macro, simply define a new implementing function using the code
below as a guideline, then add the macro and function name to the
macro function table, mftab[], which appears immediately after the
last macro implementing function.
A macro implementing function returns TRUE upon success (in which
case it must supply its output string in the "output" argument
when it returns), FALSE in case of failure when the contents of
the "output" argument are to be discarded, and DIAGNOSTIC if an
error in the macro has caused a diagnostic message to be placed in
the "output" string.
*/
/* @(+,<int1>,<int2>,...) -- Add numbers together */
Mfunc(f_plus)
{
int i;
double result = 0;
for (i = 0; i < nargs; i++) {
double varg;
Rarg(varg, i);
if (i == 0) {
result = varg;
} else {
result += varg;
}
}
Rreal(result);
}
/* @(-,<int1>,<int2>,...) -- Subtract numbers from an initial number */
Mfunc(f_minus)
{
int i;
double result = 0;
for (i = 0; i < nargs; i++) {
double varg;
Rarg(varg, i);
if (i == 0) {
result = varg;
} else {
result -= varg;
}
}
Rreal(result);
}
/* @(*,<int1>,<int2>,...) -- Multiply numbers together */
Mfunc(f_times)
{
int i;
double result = 1;
for (i = 0; i < nargs; i++) {
double varg;
Rarg(varg, i);
if (i == 0) {
result = varg;
} else {
result *= varg;
}
}
Rreal(result);
}
/* @(/,<int1>,<int2>,...) -- Divide a number by other numbers */
Mfunc(f_divide)
{
int i;
double result = 1;
for (i = 0; i < nargs; i++) {
double varg;
Rarg(varg, i);
if (i == 0) {
result = varg;
} else {
result /= varg;
}
}
Rreal(result);
}
/* @(=,<num1>,<num2>) -- Test two numbers equal */
Mfunc(f_numeq)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(FUZZEQ(v1, v2));
}
/* @(!=,<num1>,<num2>) -- Test two numbers unequal */
Mfunc(f_numne)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(!FUZZEQ(v1, v2));
}
/* @(<,<num1>,<num2>) -- Test two numbers less than */
Mfunc(f_numlt)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(v1 < v2);
}
/* @(>,<num1>,<num2>) -- Test two numbers greater than */
Mfunc(f_numgt)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(v1 > v2);
}
/* @(>=,<num1>,<num2>) -- Test two numbers greater than or equal */
Mfunc(f_numge)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(v1 >= v2);
}
/* @(<=,<num1>,<num2>) -- Test two numbers less than or equal */
Mfunc(f_numle)
{
double v1, v2;
ArgCount(2, 2);
Rarg(v1, 0);
Rarg(v2, 1);
Rint(v1 <= v2);
}
/* @(AND,<int1>,<int2>,...) -- Bitwise AND integers together */
Mfunc(f_and)
{
int i, result = 1;
for (i = 0; i < nargs; i++) {
int varg;
Iarg(varg, i);
if (i == 0) {
result = varg;
} else {
result &= varg;
}
}
Rint(result);
}
#ifdef UNIXTENSIONS
/* @(EDTIME,<time>,<picture>) -- Edit time to format <picture>
Assume the date is: Thursday, 2 September 1993 4:53:17
Format phrases:
D 2
DD 02
DDD Thu
DDDD Thursday
M 9
MO 09
MON Sep
MONTH September
YY 93
YYYY 1993
H 4
HH 04
MM 53
SS 17
AM/PM AM
am/pm am
A/P A
a/p a
If any of the "AM/PM" phrases appear in the picture, the "H"
and "HH" phrases will edit the time according to the 12 hour
civil clock (12:00-12:59-1:00-11:59) instead of the 24 hour
clock (00:00-23:59).
If <time> is 0, the current time and date is edited.
*/
Mfunc(f_edtime)
{
double val;
Dsarg(pic);
long ltime;
struct tm *jd;
char *pp = pic;
static int mday, min, tmon, sec, heure, year, yearmod100;
/* Why declare it this way? Think about the poor sucker who has
to localise a strncasecmp(zilch, "MONTH", 5) when "MONTH"
translates into different length words in other languages! */
static char month[] = "MONTH",
mon[] = "MON",
dddd[] = "DDDD",
ddd[] = "DDD",
ampm[] = "AM/PM",
ap[] = "A/P";
int lcompl;
#define lComp(x) x, lcompl = strlen(x)
static struct {
char *pname;
char *pfmt;
int *pitem;
} pictab[] = {
/* Careful! These must be sorted by descending order of
picture string length. */
{"YYYY", "%02d", &year},
{"DD", "%02d", &mday},
{"HH", "%02d", &heure},
{"MM", "%02d", &min},
{"MO", "%02d", &tmon},
{"SS", "%02d", &sec},
{"YY", "%02d", &yearmod100},
{"D", "%d", &mday},
{"H", "%d", &heure},
{"M", "%d", &tmon}
};
ArgCount(2, 2);
Rarg(val, 0);
Sarg(pic, 1);
V strcpy(output, "");
/* Special gimmick: if the time argument is zero, use the current
date and time saved at the start of the entire macro
evaluation. This not only saves space and time, it avoids
embarrassment due to the time incrementing between individual
calls on @(edtime) within one overall macro line. */
if (FUZZEQ(val, 0.0)) {
ltime = time((time_t *) NULL);
} else {
ltime = val;
}
jd = localtime(&ltime);
tmon = jd->tm_mon + 1;
mday = jd->tm_mday;
min = jd->tm_min;
sec = jd->tm_sec;
year = jd->tm_year + 1900;
yearmod100 = year % 100; /* Calculate year mod 100 */
#ifdef lint
/* The variables that appear in the following bogus statement
are set above but only referenced via their pointers in the
pictab[] table above. Lint doesn't understand this, and
complains that the variables are set but never referenced.
Handing the following statement to lint shuts it up. */
tmon = mday + min + tmon + sec + yearmod100;
#endif
/* If the time picture contains any "A" or "P" characters, which
indicate that time is expressed in AM or PM (or any of its
variants), convert the hour to 12 hour civil clock time. */
heure = jd->tm_hour;
if (strstr(pic, "AM/PM") || strstr(pic, "A/P") ||
strstr(pic, "am/pm") || strstr(pic, "a/p")) {
heure = jd->tm_hour % 12;
if (heure == 0) {
heure = 12;
}
}
while (*pp != EOS) {
/* Detect incipient output string overflow and escape in time. */
if (strlen(output) > STRLIMIT) {
V strcat(output, OverFlow);
return DIAGNOSTIC;
}
if (strncasecmp(pp, lComp(month)) == 0) {
static char *mois[] = {
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"
};
V strcat(output, mois[jd->tm_mon]);
pp += lcompl;
} else if (strncasecmp(pp, lComp(mon)) == 0) {
static char *mois[] = {
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec"
};
V strcat(output, mois[jd->tm_mon]);
pp += lcompl;
} else if (strncasecmp(pp, lComp(dddd)) == 0) {
static char *jour[] = {
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"
};
V strcat(output, jour[jd->tm_wday]);
pp += lcompl;
} else if (strncasecmp(pp, lComp(ddd)) == 0) {
static char *jour[] = {
"Sun",
"Mon",
"Tue",
"Wed",
"Thu",
"Fri",
"Sat"
};
V strcat(output, jour[jd->tm_wday]);
pp += lcompl;
} else if (strncasecmp(pp, lComp(ampm)) == 0 ||
strncasecmp(pp, lComp(ap)) == 0) {
char AandP = (jd->tm_hour >= 12 ? 'P' : 'A');
int l = strlen(output);
if (islower(*pp)) {
AandP = tolower(AandP);
}
output[l] = AandP;
if (pp[1] != '/') {
output[++l] = pp[1];
}
output[l + 1] = EOS;
pp += lcompl;
} else {
int i, foundit = FALSE;
for (i = 0; i < ELEMENTS(pictab); i++) {
if (strncasecmp(pp, pictab[i].pname,
strlen(pictab[i].pname)) == 0) {
V sprintf(output + strlen(output), pictab[i].pfmt,
*pictab[i].pitem);
pp += strlen(pictab[i].pname);
foundit = TRUE;
break;
}
}
if (!foundit) {
char *op = output + strlen(output);
*op++ = *pp++;
*op = EOS;
}
}
}
return TRUE;
}
#endif /* UNIXTENSIONS */
/* @(EQ,<str1>,<str2>) -- Return 1 if strings equal, 0 otherwise */
Mfunc(f_equal)
{
Dsarg(arg1);
Dsarg(arg2);
ArgCount(2, 2);
Sarg(arg1, 0);
Sarg(arg2, 1);
Rint(strcmp(arg1, arg2) == 0);
}
/* @(EVAL,<arg>) -- Evaluate <arg>, re-scanning as if in input stream */
Mfunc(f_eval)
{
Dsarg(arg);
int retval;
static int depth = 0;
if (depth >= MAXDEPTH)
return FALSE;
ArgCount(1, 1);
Sarg(arg, 0);
depth++;
retval = (diesel(arg,output) == 0);
depth--;
return retval;
}
/* @(FIX,<real>) -- The fractional part of <real> is truncated */
Mfunc(f_fix)
{
double r;
int rfix;
ArgCount(1, 1);
Rarg(r, 0);
rfix = r;
Rint(rfix);
}
#ifdef UNIXTENSIONS
/* @(GETENV,varname) -- Get environment variable value */
Mfunc(f_getenv)
{
Dsarg(vname);
char *ep;
ArgCount(1, 1);
Sarg(vname, 0);
ep = getenv(vname);
if (strlen(ep) >= STRLIMIT) {
V strcpy(output, OverFlow);
return DIAGNOSTIC;
}
Rstr(ep != NULL ? ep : "");
}
#endif /* UNIXTENSIONS */
#ifdef VARIABLES
/* @(CLEAR) -- Clear all variables */
Mfunc(f_clear)
{
struct varitem *vp = varlist, *vi;
while (vp != NULL) {
vi = vp->vinext;
free(vp->viname);
free(vp->vivalue);
free((char *) vp);
vp = vi;
}
if (varlist != NULL)
varlist=NULL;
Rstr("");
}
/* @(GETVAR,<varname>) -- Returns the value for the named
variable. Errors if the variable has
not been defined. */
Mfunc(f_getvar)
{
Dsarg(vname);
struct varitem *vp = varlist;
ArgCount(1, 1);
Sarg(vname, 0);
while (vp != NULL) {
if (strcmp(vp->viname, vname) == 0) {
Rstr(vp->vivalue);
}
vp = vp->vinext;
}
return FALSE;
}
#endif /* VARIABLES */
/* @(IF,<int1>,<true>,<false>) -- If <int1> is nonzero, evaluate and
return <true>, otherwise evaluate
and return <false>. If <false>
is omitted and <int1> is zero, the
null string is returned. */
Mfunc(f_if)
{
int bval;
Dsarg(str);
ArgCount(2, 3);
Iarg(bval, 0);
if (bval) {
Sarg(str, 1);
} else {
if (nargs > 2) {
Sarg(str, 2);
} else {
str[0] = EOS;
}
}
Rstr(str);
}
/* @(INDEX,<n>,<listarg>) -- Extracts the nth item from a comma separated
list <listarg>. Returns the null string if
no nth item exists. */
Mfunc(f_index)
{
int bval;
Dsarg(str);
char *sp;
ArgCount(2, 2);
Iarg(bval, 0);
if (bval < 0)
return FALSE;
Sarg(str, 1);
sp = str;
/* Advance the specified number of argument separators. */
while (bval-- > 0) {
sp = strchr(sp, ARGSEP);
if (sp == NULL) {
Rstr("");
}
sp++;
}
/* If there's another argument separator, terminate the result
string at that point. */
if (strchr(sp, ARGSEP)) {
*strchr(sp, ARGSEP) = EOS;
}
Rstr(sp);
}
/* @(LOWER,<string>) -- Convert string to lower case */
Mfunc(f_lower)
{
ArgCount(1, 1);
V strcpy(output, "");
if (nargs > 0) {
Dsarg(str);
Sarg(str, 0);
lcase(str);
V strcpy(output, str);
}
return TRUE;
}
/* @(NTH,<n>,<item1>,<item2>,...<itemj>) -- Evauates and returns <itemn> */
Mfunc(f_nth)
{
int n;
Dsarg(str);
ArgCount(2, MAXARGS);
Iarg(n, 0);
if ((n < 0) || ((n + 1) >= nargs))
return FALSE;
Sarg(str, n + 1);
Rstr(str);
}
/* @(OR,<int1>,<int2>,...) -- Bitwise OR integers together */
Mfunc(f_or)
{
int i, result = 0;
for (i = 0; i < nargs; i++) {
int varg;
Iarg(varg, i);
if (i == 0) {
result = varg;
} else {
result |= varg;
}
}
Rint(result);
}
#ifdef VARIABLES
/* @(SETVAR,<varname>,<value>) -- Sets the variable named <varname>
to the given <value>. If the
variable is not currently defined,
a new variable is created. Returns
the null string. */
Mfunc(f_setvar)
{
Dsarg(vname);
Dsarg(vvalue);
struct varitem *vp = varlist, *vi;
char *vnew;
ArgCount(2, 2);
Sarg(vname, 0);
Sarg(vvalue, 1);
vnew = strdup(vvalue);
if (vnew == NULL) {
/* Out of memory--cannot define new variable. */
return FALSE;
}
while (vp != NULL) {
if (strcmp(vp->viname, vname) == 0) {
free(vp->vivalue);
vp->vivalue = vnew;
Rstr("");
}
vp = vp->vinext;
}
Get(vi, varitem);
if (vi == NULL) {
return FALSE;
}
vi->viname = strdup(vname);
if (vi->viname == NULL) {
free((char *) vi);
return FALSE;
}
vi->vinext = varlist;
vi->vivalue = vnew;
varlist = vi;
Rstr("");
}
#endif /* VARIABLES */
/* @(STRCMP,<str1>,<str2>) -- Return 0, -1 or 1 if strings equal, less or greater */
Mfunc(f_strcmp)
{
Dsarg(arg1);
Dsarg(arg2);
ArgCount(2, 2);
Sarg(arg1, 0);
Sarg(arg2, 1);
Rint(strcmp(arg1, arg2));
}
/* @(STRFILL,<string>,<ncopies>) -- Create a string by concatenating
<ncopies> of <string> together */
Mfunc(f_strfill)
{
Dsarg(str);
int ncopies;
ArgCount(2, 2);
Sarg(str, 0);
Iarg(ncopies, 1);
if (ncopies < 1) {
Rstr("");
} else {
output[0] = EOS;
while (ncopies-- > 0) {
if ((strlen(output) + strlen(str)) >= STRLIMIT) {
V strcpy(output, OverFlow);
return DIAGNOSTIC;
}
V strcat(output, str);
}
}
return TRUE;
}
/* @(STRLEN,<string>) -- Return length of string */
Mfunc(f_strlen)
{
Dsarg(str);
ArgCount(1, 1);
Sarg(str, 0);
Rint(strlen(str));
}
/* @(STRSTR,<str1>,<str2>) -- Find a substring in a string */
Mfunc(f_strstr)
{
Dsarg(arg1);
Dsarg(arg2);
int j,l,r;
ArgCount(2, 2);
Sarg(arg1, 0);
Sarg(arg2, 1);
l=strlen(arg2);
r=0;
for (j=0; arg1[j] != EOS; j++)
if (strncmp(&arg1[j],arg2,l) == 0){
r=(j+1);
break;
}
Rint(r);
}
/* @(SUBSTR,<string>,<start>,<length>) -- Extract substring */
Mfunc(f_substr)
{
ArgCount(2, 3);
V strcpy(output, "");
if (nargs > 0) {
Dsarg(str);
int start, len = MAXSTR + 1, l = strlen(argv[0]);
Sarg(str, 0);
Iarg(start, 1);
if (nargs > 2) {
Iarg(len, 2);
}
if ((start >= 1) && ((start - 1) < l)) {
char *ip = str + (start - 1), *op = output;
while ((len-- > 0) && *ip) {
*op++ = *ip++;
}
*op++ = EOS;
}
}
return TRUE;
}
#ifdef UNIXTENSIONS
/* @(TIME) -- Return Unix integer time */
/* ARGSUSED */
Mfunc(f_time)
{
ArgCount(0, 0);
V sprintf(output, "%ld", (long) time((time_t *) NULL));
return TRUE;
}
#endif /* UNIXTENSIONS */
/* @(UPPER,<string>) -- Convert string to upper case */
Mfunc(f_upper)
{
ArgCount(1, 1);
V strcpy(output, "");
if (nargs > 0) {
Dsarg(str);
Sarg(str, 0);
ucase(str);
V strcpy(output, str);
}
return TRUE;
}
/* @(XOR,<int1>,<int2>,...) -- Bitwise XOR integers together */
Mfunc(f_xor)
{
int i, result = 0;
for (i = 0; i < nargs; i++) {
int varg;
Iarg(varg, i);
if (i == 0) {
result = varg;
} else {
result ^= varg;
}
}
Rint(result);
}
/* Macro name/function table. */
static struct mfent mftab[] = {
{"+", f_plus},
{"-", f_minus},
{"*", f_times},
{"/", f_divide},
{"=", f_numeq},
{"<", f_numlt},
{">", f_numgt},
{"!=", f_numne},
{"<=", f_numle},
{">=", f_numge},
{"AND", f_and},
{"EQ", f_equal},
{"EVAL", f_eval},
{"FIX", f_fix},
{"IF", f_if},
{"INDEX", f_index},
{"LOWER", f_lower},
{"NTH", f_nth},
{"OR", f_or},
{"STRCMP", f_strcmp},
{"STRFILL", f_strfill},
{"STRLEN", f_strlen},
{"STRSTR", f_strstr},
{"SUBSTR", f_substr},
{"UPPER", f_upper},
{"XOR", f_xor},
#ifdef UNIXTENSIONS
{"EDTIME", f_edtime},
{"GETENV", f_getenv},
{"TIME", f_time},
#endif /* UNIXTENSIONS */
#ifdef VARIABLES
{"CLEAR", f_clear},
{"GETVAR", f_getvar},
{"SETVAR", f_setvar},
#endif /* VARIABLES */
};
/* COPYMODE -- Copies characters from the input to the output,
handling quoted literal strings as it goes. If a
nonquoted macro character is encountered, returns
with the string pointer positioned at the macro
character. If end of string is encountered, the
input pointer will be left positioned at the EOS
character. Returns 0 if the end of string is
encountered, 1 if a macro is encountered, and -1 if
the end of input was encountered while copying a
quoted string. */
static int copymode(char **, char **);
static int copymode(char **in, char **out)
{
char *ip = *in, *op = *out;
char ch;
int instring = FALSE;
while ((ch = *ip++) != EOS) {
switch (ch) {
case QUOTE:
if (instring) {
/* If we're in a string and hit a quote, peek
ahead. If the next character is a quote also,
then this is a forced quote. Copy it literally
to the output stream and leave the in-string
mode in effect. */
if (*ip == QUOTE) {
*op++ = QUOTE;
ip++;
} else {
instring = FALSE;
}
} else {
instring = TRUE;
}
break;
case MACROCHAR:
if (!instring && *ip == ARGOPEN) {
*in = ip;
*out = op;
return 1;
}
/* Wheeee!!! Note fall-through. */
default:
*op++ = ch;
break;
}
/* If we're in danger of overflowing the output string, attach
the string overflow indication and bail out. We advance
the input pointer to the end of string and signal end of
input being encountered to cleanly shut down the
interpreter. */
if ((op - *out) > STRLIMIT) {
V strcpy(op, OverFlow);
*in = ip + strlen(ip); /* Advance input pointer to EOS */
*out = op + strlen(op); /* Calculate end of string pointer */
return 0; /* Say end of string was encountered */
}
}
*in = ip - 1;
*out = op;
return instring ? -1 : 0;
}
/* MACROMODE -- Scan a macro, identifying its arguments. Returns
the number of arguments scanned (including the
macro name) if the macro is valid, 0 if a syntax
error occurs, and -1 if the end of the input string
was encountered before the matching macro bracket
was found. If a positive result is returned, the
output string will contain the arguments as
successive strings, separated by EOS markers. */
static int macromode(char **, char**);
static int macromode(char **in, char **out)
{
char *ip = *in, *op = *out;
char ch;
int nargs = 0, instring = FALSE, depth = 0;
if ((ch = *ip++) != ARGOPEN) {
*op++ = MACROCHAR;
*op++ = ch;
*in = ip - 1; /* Unconsume character */
*out = op;
return 0;
}
/* Now scan the arguments of the macro, searching for the matching
macro bracket. We recognise quoted strings and argument
delimiter characters here, but don't evaluate any of the
arguments. */
while ((ch = *ip++) != EOS) {
switch (ch) {
case QUOTE:
if (instring) {
/* If we're in a string and hit a quote, peek
ahead. If the next character is a quote also,
then this is a forced quote. Copy it literally
to the output stream and leave the in-string
mode in effect. */
if (*ip == QUOTE) {
*op++ = QUOTE;
ip++;
} else {
instring = FALSE;
}
} else {
instring = TRUE;
}
break;
case ARGOPEN:
if (!instring) {
depth++;
}
*op++ = ch;
break;
case ARGCLOSE:
if (!instring) {
if (--depth < 0) {
*op++ = EOS;
nargs++;
*out = op;
*in = ip;
return nargs;
}
}
*op++ = ch;
break;
case ARGSEP:
if (!instring && (depth == 0)) {
if (nargs >= MAXARGS - 1)
goto errout;
nargs++; /* Increment number of arguments */
ch = EOS; /* Store argument break in output */
}
/* Wheeee!!! Note fall-through. */
default:
*op++ = ch;
break;
}
/* If we're in danger of overflowing the output string, attach
the string overflow indication and bail out. We advance
the input pointer to the end of string and signal end of
input being encountered to cleanly shut down the
interpreter. */
if ((op - *out) > STRLIMIT) {
errout:
V strcpy(op, OverFlow);
*in = ip + strlen(ip); /* Advance input pointer to EOS */
*out = op + strlen(op); /* Calculate end of string pointer */
return -1; /* Call it an unmatched bracket */
}
}
/* Hit end of input string without finding matching macro bracket. */
*op++ = EOS;
*out = op;
*in = ip - 1;
return -1;
}
/* MACROVALUE -- Determine the value of a macro. Returns TRUE if
the macro was evaluated successfully, FALSE if
an error was detected, and DIAGNOSTIC if the macro
errored and supplied a diagnostic message as its
output. */
static int macrovalue(int, char *, char *);
static int macrovalue(int nargs, char *args, char *output)
{
char *argv[MAXARGS];
Dsarg(macname);
int i;
for (i = 0; i < MAXARGS; i++) {
argv[i] = "";
}
for (i = 0; i < nargs; i++) {
argv[i] = args;
args += strlen(args) + 1;
}
/* Look up the argument function in the function table. */
Sarg(macname, 0);
#ifdef CASEINS
ucase(macname);
#endif
#ifdef TRACE
if (tracing) {
V printf("Eval: @(%s", macname);
for (i = 1; i < nargs; i++) {
V printf(", %s", argv[i]);
}
V printf(")\n");
}
#endif
for (i = 0; i < ELEMENTS(mftab); i++) {
if (strcmp(macname, mftab[i].fname) == 0) {
int mstat = (*mftab[i].ffunc)(nargs - 1, argv + 1, output);
/* If the macro bailed out without supplying a diagnostic
message, make up a general-purpose message here. */
if (mstat == FALSE) {
V sprintf(output, " @(%s,%c%c) ", macname, '?', '?');
}
if (mstat != TRUE) {
#ifdef TRACE
if (tracing) {
V printf("Err: %s\n", output);
}
#endif
return DIAGNOSTIC;
}
#ifdef TRACE
if (tracing) {
V printf("===> %s\n", output);
}
#endif
return TRUE;
}
}
V sprintf(output, " @(%s)?? ", macname);
#ifdef TRACE
if (tracing) {
V printf("Err: %s\n", output);
}
#endif
return DIAGNOSTIC;
}
/* MACROEVAL -- Evaluate a macro and place its results in the output
string. Returns 1 if the macro was valid, 0 in case
of error. If the macro itself detected an error which
placed diagnostic output in out, 2 is returned. */
static int macroeval(char **, char**);
static int macroeval(char **in, char **out)
{
char *ip = *in, *op = *out;
char margs[MAXSTR], mvalue[MAXSTR];
char *ma = margs;
int stat, nargs;
nargs = stat = macromode(&ip, &ma);
if (stat > 0) {
#ifdef ECHOMAC
*op++ = ' ';
*op++ = '<';
V sprintf(op, "(%d)", stat);
op += strlen(op);
ma = margs;
while (stat-- > 0) {
int l = strlen(ma);
V strcpy(op, ma);
op += l;
ma += l + 1;
*op++ = ';';
}
*op++ = '>';
*op++ = '=';
#endif
/* Evaluate the macro. */
stat = macrovalue(nargs, margs, mvalue);
V strcpy(op, mvalue);
op += strlen(mvalue);
#ifdef ECHOMAC
if (stat == FALSE || stat == DIAGNOSTIC) {
V strcpy(op, "*ERR*");
op += 5;
}
*op++ = ' ';
#endif
} else {
stat = FALSE;
}
*op++ = EOS;
*out = op;
*in = ip;
return stat;
}
/* DIESEL -- Evaluate a string IN and return the value in OUT.
Returns zero if the evaluation was successful; if an
error was detected, returns the column at which the
error was found. */
int diesel(const char *in, char *out)
{
int stat;
char *inp = in, *outp = out;
while (TRUE) {
stat = copymode(&inp, &outp);
if (stat == 1) {
char margs[MAXSTR];
char *ma = margs;
stat = macroeval(&inp, &ma);
if (stat > 0) {
/* If we're about to overflow the output string, bail
out of the evaluation and append the overflow
marker. */
if (((outp - out) + strlen(margs)) > STRLIMIT) {
V strcpy(outp, OverFlow);
return inp - in;
}
V strcpy(outp, margs);
outp += strlen(margs);
} else {
*outp++ = MACROCHAR;
*outp++ = '?';
*outp++ = EOS;
return inp - in;
}
/* Error detected in macro evaluation which placed a
diagnostic string in the output. */
if (stat == DIAGNOSTIC) {
return inp - in;
}
} else {
*outp++ = EOS;
break;
}
}
return stat;
}
void MacroVars( const char *codes, const char *fmt, ...)
{
char *tmp1, *tmp2;
va_list ap;
int j;
int dieselrc;
char *vs;
int vd;
char vc;
double vf;
tmp1=calloc(256,sizeof(char));
tmp2=calloc(256,sizeof(char));
va_start(ap,fmt);
for ( j=0; (codes[j] != '\0') && (fmt[j] != '\0') ; j++ ){
tmp1[0]='\0';
switch(fmt[j]) {
case 's': /* string */
vs = va_arg(ap, char *);
sprintf(tmp1,"@(setvar,%c,%s)",codes[j],vs);
break;
case 'd': /* int */
vd = va_arg(ap, int);
sprintf(tmp1,"@(setvar,%c,%d)",codes[j],vd);
break;
case 'c': /* char */
vc = va_arg(ap, char);
sprintf(tmp1,"@(setvar,%c,%c)",codes[j],vc);
break;
case 'f': /* char */
vf = va_arg(ap, double);
sprintf(tmp1,"@(setvar,%c,%f)",codes[j],vf);
break;
}
dieselrc=diesel(tmp1,tmp2);
}
va_end(ap);
free(tmp1);
free(tmp2);
}
void MacroClear(void)
{
int dieselrc;
char tmp1[]="@(CLEAR)",*tmp2;
tmp2=calloc(10,sizeof(char));
dieselrc=diesel(tmp1,tmp2);
free(tmp2);
}
char *ParseMacro( const char *line, int *dieselrc)
{
static char res[256];
char *tmp1,*tmp2,*tmp3;
char *i;
int j;
int l;
char code;
res[0]='\0';
*dieselrc=0;
if ( *line == '#' )
return res;
tmp1 = calloc(256,sizeof(char));
tmp2 = calloc(256,sizeof(char));
tmp3 = calloc(256,sizeof(char));
tmp1[0]='\0';
for ( i=line ; i[0] != '\0'; i++){
if ( (i[0] == '@') && isalpha(i[1]) ){
l=2;
i++;
if (i[0] != '@') {
if ((code = i[0]) != '\0' )
i++;
while (( i[0] == '_') || ( i[0] == '>') || ( i[0] == '<') ){
l++;
i++;
}
i--;
sprintf(tmp2,"@(GETVAR,%c)",code);
if (!diesel(tmp2,tmp3)==0){
sprintf(tmp3,"%c%c",'@',code);
}
if (l>2){
if ( *i != '>')
l=-l;
sprintf(&tmp1[strlen(tmp1)],"%*.*s",l,l, tmp3);
}else{
sprintf(&tmp1[strlen(tmp1)],"%s",tmp3);
}
}else{
tmp1[(j=strlen(tmp1))]='@';
tmp1[j+1]='\0';
}
}else{
tmp1[(j=strlen(tmp1))]=i[0];
tmp1[j+1]='\0';
}
}
i = tmp1;
sprintf(tmp2,"%s",tmp1);
if ((tmp1[0]=='@') && (tmp1[1]=='{')){
i++;
i++;
for (j=2; ((tmp1[j]!='}') && (tmp1[j]!='\0'));j++){
i++;
}
if ( (tmp1[j]=='}') ){
i++;
res[0]='\0';
if (j>2)
sprintf(res,"%.*s",j-2,&tmp1[2]);
if ((diesel(res,tmp3)!=0) || (atoi(tmp3)==0))
sprintf(tmp2,"@!%s",i);
else
sprintf(tmp2,"%s",i);
}
}
*dieselrc=diesel(tmp2, res);
free(tmp1);
free(tmp2);
free(tmp3);
while (isspace(res[strlen(res) - 1])) {
res[strlen(res) - 1] = EOS;
}
sprintf(&res[strlen(res)],"\r\n");
if ((res[0] == '@') && (res[1] =='!' ))
res[0]='\0';
return res;
}
#ifdef TESTPROG
/* Test program. */
main()
{
char in[MAXSTR + 1], out[MAXSTR + 1];
int err;
while (TRUE) {
if (fgets(in, sizeof in, stdin) == NULL) {
break;
}
/* Cheap way to be insensitive to EOL conventions. */
sprintf(out,"%s",ParseMacro(in,&err));
if (err) {
V printf("=> %s\n", in);
V printf("---");
while (--err > 0) {
V printf("-");
}
V printf("^\n");
}
V printf("%s", out);
}
return 0;
}
#endif /* TESTPROG */