314 lines
28 KiB
HTML
314 lines
28 KiB
HTML
|
<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 23. Filled contour graphs</title><link rel="stylesheet" type="text/css" href="manual.css"><meta name="generator" content="DocBook XSL Stylesheets V1.76.0"><link rel="home" href="index.html" title="JpGraph Manual"><link rel="up" href="pt05.html" title="Part V. Additional graph types available in the professional version"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter 23. Filled contour graphs</th></tr><tr><td width="20%" align="left"> </td><th width="60%" align="center">Part V. Additional graph types available in the professional version</th><td width="20%" align="right"> </td></tr></table><hr></div><div class="chapter" title="Chapter 23. Filled contour graphs"><div class="titlepage"><div><div><h2 class="title"><a name="chapter.filled-contour-graphs"></a>Chapter 23. Filled contour graphs</h2></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="sect1"><a href="ch23.html#id2594434">23.1. Filled Contour graphs</a></span></dt><dd><dl><dt><span class="sect2"><a href="ch23.html#id2594607">23.1.1. Creating a filled contour graph</a></span></dt><dt><span class="sect2"><a href="ch23.html#id2594628">23.1.2. Enabling and disabling contour lines</a></span></dt><dt><span class="sect2"><a href="ch23.html#id2594656">23.1.3. Specifying a filled contour</a></span></dt><dt><span class="sect2"><a href="ch23.html#id2594673">23.1.4. Adjusting the labels in the contour</a></span></dt><dt><span class="sect2"><a href="ch23.html#id2595002">23.1.5. Selecting the adaptive method to use</a></span></dt></dl></dd></dl></div>
|
|||
|
|
|||
|
<div class="sect1" title="Filled Contour graphs"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id2594434"></a>Filled Contour graphs</h2></div></div></div>
|
|||
|
|
|||
|
<p>
|
|||
|
</p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
|
|||
|
<p>This section describes additional functionality available in the pro-version
|
|||
|
v3.1p and above.</p>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
<p>The use of filled ContourPlots requires the inclusion of the module
|
|||
|
"<code class="filename">jpgraph_contourf.php</code>". The filled version of contour graphs
|
|||
|
supports the following additional features compared to the regular contour graphs</p>
|
|||
|
<div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p>Filled contour plots</p>
|
|||
|
</li><li class="listitem">
|
|||
|
<p>Labelling of isobar lines in the contour plots</p>
|
|||
|
</li><li class="listitem">
|
|||
|
<p>Two user selectable adaptive algorithms to determine the contours, one
|
|||
|
rectangular and one triangular based adaptive mesh algorithm.</p>
|
|||
|
</li></ul></div><p>The enhanced contour plot is contained in the new plot <code class="code">class
|
|||
|
FilledContourPlot</code>.</p>
|
|||
|
<p>As a quick introduction the two examples below shows two contour graphs which makes
|
|||
|
use of these additional features</p>
|
|||
|
<p>
|
|||
|
<table xmlns="" frame="void" id="id2594508">
|
|||
|
<tbody xmlns="">
|
|||
|
<tr>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex1"></a><p class="title"><b>Figure 23.1. Filled contour with labels <code class="uri"><a class="uri" href="example_src/contour2_ex1.html" target="_top">(<code class="filename">contour2_ex1.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex1.png" alt="Filled contour with labels (contour2_ex1.php)"></span> </div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex2"></a><p class="title"><b>Figure 23.2. Filled contour with no isobar lines <code class="uri"><a class="uri" href="example_src/contour2_ex2.html" target="_top">(<code class="filename">contour2_ex2.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex2.png" alt="Filled contour with no isobar lines (contour2_ex2.php)"></span> </div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
</tr>
|
|||
|
</tbody>
|
|||
|
</table>
|
|||
|
</p>
|
|||
|
<p>All basic formatting, such as specifying colors and number/location of the isobar
|
|||
|
lines are handled in exactly the same way as described in the previous section for basic
|
|||
|
contours.</p>
|
|||
|
<div class="sect2" title="Creating a filled contour graph"><div class="titlepage"><div><div><h3 class="title"><a name="id2594607"></a>Creating a filled contour graph</h3></div></div></div>
|
|||
|
|
|||
|
<p>The filled contour graph follows the exact same principles as for the non filled
|
|||
|
graph described above. The core difference is that a filled graph is created as an
|
|||
|
instance of <code class="code">class FilledContourPlot</code>, i.e.</p>
|
|||
|
<p>
|
|||
|
</p><div class="hl-main"><table class="hl-table" width="100%"><tr><td class="hl-gutter" align="right" valign="top"><pre>1
|
|||
|
2
|
|||
|
3
|
|||
|
</pre></td><td class="hl-main" valign="top"><pre><span class="hl-inlinetags"><?php</span><span class="hl-code">
|
|||
|
</span><span class="hl-var">$filledContour</span><span class="hl-code"> = </span><span class="hl-reserved">new</span><span class="hl-code"> </span><span class="hl-identifier">FilledContourPlot</span><span class="hl-brackets">(</span><span class="hl-var">$data</span><span class="hl-brackets">)</span><span class="hl-code">;
|
|||
|
</span><span class="hl-inlinetags">?></span></pre></td></tr></table></div><p>
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="sect2" title="Enabling and disabling contour lines"><div class="titlepage"><div><div><h3 class="title"><a name="id2594628"></a>Enabling and disabling contour lines</h3></div></div></div>
|
|||
|
|
|||
|
<p>Contour lines are controlled with the method</p>
|
|||
|
<p>
|
|||
|
</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p><code class="code">FilledContourPlot::ShowLines($aFlg,$aColorWithFilled='black')</code></p>
|
|||
|
<p>The <code class="code">$aFlg</code> is a boolean that determines if contour lines
|
|||
|
should be shown or not. by default they are enabled. The second argument
|
|||
|
<code class="code">$aColorWithFilled</code> determines what color the contour
|
|||
|
lines should have when the contour is filled. If the contour is not
|
|||
|
filled then the contour lines will have the color of the isobar.</p>
|
|||
|
</li></ul></div><p>
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="sect2" title="Specifying a filled contour"><div class="titlepage"><div><div><h3 class="title"><a name="id2594656"></a>Specifying a filled contour</h3></div></div></div>
|
|||
|
|
|||
|
<p>In order to have the contour filled the method</p>
|
|||
|
<div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p><code class="code">ContourPlot::SetFilled($aFlg)</code> Determines if the contour
|
|||
|
should be filled or not.</p>
|
|||
|
</li></ul></div>
|
|||
|
<p>should be called.</p>
|
|||
|
<p>Since there are <span class="italic">n</span> isobar lines and there needs to be <span class="italic">n+1</span> colors to fill the graph there is a choice of what
|
|||
|
side should the color for isobar line <span class="italic">n</span> fill. The area above or the area below the isobar. In
|
|||
|
this library we use the convention that the color for isobar line <span class="italic">n</span> is used to fill the area up to the next highest
|
|||
|
isobar <span class="italic">n+1</span>. </p>
|
|||
|
<p>If the colors are specified manually it is important that one more color than the
|
|||
|
number of isobar lines are specified. The convention is such that the color
|
|||
|
specified in the first position (position = 0 ) in the color array is used to fill
|
|||
|
the area below the lowest specified isobar.</p>
|
|||
|
<p>An example will make this clear.</p>
|
|||
|
<p>The graph below only uses three isobar lines (to keep things simple) which means
|
|||
|
that we need four colors. To create such a graph we use the lines</p>
|
|||
|
<div class="hl-main"><table class="hl-table" width="100%"><tr><td class="hl-gutter" align="right" valign="top"><pre>1
|
|||
|
2
|
|||
|
3
|
|||
|
4
|
|||
|
5
|
|||
|
6
|
|||
|
7
|
|||
|
8
|
|||
|
9
|
|||
|
10
|
|||
|
11
|
|||
|
12
|
|||
|
</pre></td><td class="hl-main" valign="top"><pre><span class="hl-inlinetags"><?php</span><span class="hl-code">
|
|||
|
</span><span class="hl-var">$data</span><span class="hl-code"> = </span><span class="hl-reserved">array</span><span class="hl-brackets">(</span><span class="hl-code"> ... </span><span class="hl-brackets">)</span><span class="hl-code">;
|
|||
|
|
|||
|
</span><span class="hl-var">$isobar_colors</span><span class="hl-code"> = </span><span class="hl-reserved">array</span><span class="hl-brackets">(</span><span class="hl-quotes">'</span><span class="hl-string">lightgray</span><span class="hl-quotes">'</span><span class="hl-code">,</span><span class="hl-quotes">'</span><span class="hl-string">teal:1.3</span><span class="hl-quotes">'</span><span class="hl-code">,</span><span class="hl-quotes">'</span><span class="hl-string">orange</span><span class="hl-quotes">'</span><span class="hl-code">,</span><span class="hl-quotes">'</span><span class="hl-string">red</span><span class="hl-quotes">'</span><span class="hl-brackets">)</span><span class="hl-code">;
|
|||
|
|
|||
|
</span><span class="hl-comment">//</span><span class="hl-comment"> Create a new contour graph with three isobar lines</span><span class="hl-comment"></span><span class="hl-code">
|
|||
|
</span><span class="hl-var">$cp</span><span class="hl-code"> = </span><span class="hl-reserved">new</span><span class="hl-code"> </span><span class="hl-identifier">ContourPlot</span><span class="hl-brackets">(</span><span class="hl-var">$data</span><span class="hl-code">,</span><span class="hl-number">3</span><span class="hl-brackets">)</span><span class="hl-code">;
|
|||
|
|
|||
|
</span><span class="hl-comment">//</span><span class="hl-comment"> Specify the colors manually</span><span class="hl-comment"></span><span class="hl-code">
|
|||
|
</span><span class="hl-var">$cp</span><span class="hl-code">-></span><span class="hl-identifier">SetIsobarColors</span><span class="hl-brackets">(</span><span class="hl-var">$isobar_colors</span><span class="hl-brackets">)</span><span class="hl-code">;
|
|||
|
|
|||
|
</span><span class="hl-inlinetags">?></span></pre></td></tr></table></div>
|
|||
|
<p>
|
|||
|
</p><div class="figure"><a name="fig.contour2_ex3"></a><p class="title"><b>Figure 23.3. Manual colors for contour <code class="uri"><a class="uri" href="example_src/contour2_ex3.html" target="_top">(<code class="filename">contour2_ex3.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex3.png" alt="Manual colors for contour (contour2_ex3.php)"></span> </div></div><p><br class="figure-break">
|
|||
|
</p>
|
|||
|
<p>as can be seen from the labels in the graph the algorithm has resulted in three
|
|||
|
isobar lines (as specified) at values <span class="italic">6.2</span>, <span class="italic">10.5</span> and <span class="italic">14.8</span>. The first color "gray" is used to fill the area
|
|||
|
below the smallest isobar (<span class="italic">6.2</span>).</p>
|
|||
|
<p>It should be noted that by specifying <code class="code">SetFilled(false)</code> a non filled
|
|||
|
contour graph can be created. However, the visual appearance compared with the
|
|||
|
<code class="code">class ContourPlot</code> will be slightly different. The reason is that
|
|||
|
the filled contour plot class uses an adaptive algorithm that gives better fidelity
|
|||
|
than the simpler non adaptive algorithm used in the standard (non-filled) contour
|
|||
|
plot class. The contour corresponds to creating a contour with the plain contour
|
|||
|
plot algorithm (class ContourPlot) using an interpolation factor of ~3-4.</p>
|
|||
|
</div>
|
|||
|
<div class="sect2" title="Adjusting the labels in the contour"><div class="titlepage"><div><div><h3 class="title"><a name="id2594673"></a>Adjusting the labels in the contour</h3></div></div></div>
|
|||
|
|
|||
|
<p>In order to make it easier to follow the contour labels can be added inside the
|
|||
|
contour. The labels are placed using a heuristic algorithm that tries to place
|
|||
|
enough labels to make the plot easy to read but not as many labels as to make it
|
|||
|
crowded.</p>
|
|||
|
<p>There are two main characteristic of the labels that can be controlled.</p>
|
|||
|
<div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p>The font and color of the labels which are controlled by the two methods
|
|||
|
<code class="code">FilledContourPlot::SetFont()</code> and
|
|||
|
<code class="code">FilledContourPlot::SetFontColor()</code></p>
|
|||
|
</li><li class="listitem">
|
|||
|
<p>Whether or not the label should follow the gradient of the isobar line at
|
|||
|
the point where the label is displayed or if it should always be drawn
|
|||
|
horizontally.</p>
|
|||
|
</li></ul></div>
|
|||
|
<p>To enable or disable the display of the labels as well as determining if the label
|
|||
|
should follow the gradient or not the method</p>
|
|||
|
<p>
|
|||
|
</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p><code class="code">FilledContourPlot::ShowLabel($aFlg,$aFollowGradient)</code></p>
|
|||
|
</li></ul></div><p>
|
|||
|
</p>
|
|||
|
<p>is used. The two examples below show two variants of the same contour where the
|
|||
|
left graph have labels which follows the gradient and the right graph have labels
|
|||
|
that are always oriented horizontally.</p>
|
|||
|
<p>
|
|||
|
<table xmlns="" frame="void" id="id2594914">
|
|||
|
<tbody xmlns="">
|
|||
|
<tr>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex4"></a><p class="title"><b>Figure 23.4. Labels that follows the gradients <code class="uri"><a class="uri" href="example_src/contour2_ex4.html" target="_top">(<code class="filename">contour2_ex4.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex4.png" alt="Labels that follows the gradients (contour2_ex4.php)"></span> </div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex5"></a><p class="title"><b>Figure 23.5. Labels that are always horizontal. In this example we have also shown how to change the colors. <code class="uri"><a class="uri" href="example_src/contour2_ex5.html" target="_top">(<code class="filename">contour2_ex5.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex5.png" alt="Labels that are always horizontal. In this example we have also shown how to change the colors. (contour2_ex5.php)"></span> </div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
</tr>
|
|||
|
</tbody>
|
|||
|
</table>
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
<div class="sect2" title="Selecting the adaptive method to use"><div class="titlepage"><div><div><h3 class="title"><a name="id2595002"></a>Selecting the adaptive method to use</h3></div></div></div>
|
|||
|
|
|||
|
<p>
|
|||
|
</p><div class="note" title="Note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3>
|
|||
|
<p>This section can be skipped without loss of continuity. The default method
|
|||
|
"rectangular" recursive adaptation is good enough for most
|
|||
|
circumstances.</p>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
<p>In order to fully understand the effect of selecting which adaptive method to use
|
|||
|
it is first necessary to understand some background on how contours are created
|
|||
|
algorithmically. </p>
|
|||
|
<p>Determining general contours for a function of two independent variables is
|
|||
|
equivalent to the problem of finding the equivalence class of all coordinate pairs <span class="italic">(x,y)</span> for which for <span class="italic">C=f(x,y)</span> which in general is a non-linear problem. This
|
|||
|
is an example of a problem that is computational very expensive to mathematically
|
|||
|
solve correct but quite tractable if we view a sampled version of the function. This
|
|||
|
means that we in general do not have access to <span class="italic">f(x,y)</span> instead we only know of its values at a number
|
|||
|
of grid points. This is also the cause of visually different contour plots for the
|
|||
|
same input data.</p>
|
|||
|
<p>The difference lay in the core problem that in order to draw a continues contour
|
|||
|
we need to interpolate the unknown values in between the known sample points. This
|
|||
|
is therefore a degree of freedom where the actual choice of how we do the
|
|||
|
interpolation will cause the contour to be visually different depending on our
|
|||
|
choice.</p>
|
|||
|
<p>While it would take to far in this manual to describe the full adaptive algorithm
|
|||
|
in all details we will show the different principles that underlying the two methods
|
|||
|
hat the user can select between.</p>
|
|||
|
<p>In order to determine the isobars the given data points are considered to be
|
|||
|
vertices in a grid where each vertice is connected with an edge. There are two basic
|
|||
|
ways to connect the points with edges; rectangular and triangular. In the first way
|
|||
|
four points are connected to form a square and in the second way three point are
|
|||
|
connected to form a triangle. The so created square or triangles will be referred to
|
|||
|
as a submesh consisting of four and three sides respectively.</p>
|
|||
|
<p>To determine the isobars each submesh is recursively divided until each side is
|
|||
|
small enough to only have one crossing isobar. The exact position of the crossing is
|
|||
|
determined by linear interpolation between the two corresponding vertices.</p>
|
|||
|
<p>The figures below shows the sequences for the triangle recursive division. The
|
|||
|
recursion continues until each edge has exactly one crossing of an isobar.</p>
|
|||
|
<p>
|
|||
|
</p><div class="informaltable">
|
|||
|
<table border="0"><colgroup><col class="c1"><col class="c2"><col class="c3"></colgroup><tbody><tr><td align="center">
|
|||
|
<div class="figure"><a name="id2595141"></a><p class="title"><b>Figure 23.6. Triangulation step 0</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/tri_step0.png" alt="Triangulation step 0"></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td><td align="center">
|
|||
|
<div class="figure"><a name="id2595170"></a><p class="title"><b>Figure 23.7. Triangulation step 1</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/tri_step1.png" alt="Triangulation step 1"></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td><td align="center">
|
|||
|
<div class="figure"><a name="id2595196"></a><p class="title"><b>Figure 23.8. Triangulation step 2</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/tri_step2.png" alt="Triangulation step 2"></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td></tr></tbody></table>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
<p> In the same way the sequence of figures below shows the principle for the
|
|||
|
quadratic recursive subdivsion of the mesh for first three steps. </p>
|
|||
|
<p>
|
|||
|
</p><div class="informaltable">
|
|||
|
<table border="0"><colgroup><col class="c1"><col class="c2"><col class="c3"></colgroup><tbody><tr><td align="center">
|
|||
|
<div class="figure"><a name="id2595278"></a><p class="title"><b>Figure 23.9. "Rectangularization" step 0</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/rect_step0.png" alt='"Rectangularization" step 0'></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td><td align="center">
|
|||
|
<div class="figure"><a name="id2595302"></a><p class="title"><b>Figure 23.10. "Rectangularization" step 1</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/rect_step1.png" alt='"Rectangularization" step 1'></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td><td align="center">
|
|||
|
<div class="figure"><a name="id2595327"></a><p class="title"><b>Figure 23.11. "Rectangularization" step 2</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/rect_step2.png" alt='"Rectangularization" step 2'></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td></tr></tbody></table>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
<p> Needless to say these two variants give slightly different visual appearance of
|
|||
|
the resulting contour plot and neither of the two method can be considered "the
|
|||
|
right method". Triangularization tends to work better (and faster) for high
|
|||
|
frequency contour plots and gives a more "edgy" result. The quadratic subdivision
|
|||
|
might require more recursive steps for high frequency contours but in general gives
|
|||
|
a smoother look of the resulting contour.</p>
|
|||
|
<p>By default the library uses a rectangular mesh division and that is the method
|
|||
|
that has been used in all the previous examples. As an illustration the effect of
|
|||
|
the method have the two figures below shows the same data as we have used in the
|
|||
|
previous figures to display a contour plot with 7 isobars. The left figures uses a
|
|||
|
rectangular division (the default) and the right figure uses a triangular
|
|||
|
division.</p>
|
|||
|
<p>
|
|||
|
</p><div class="informaltable">
|
|||
|
<table border="0"><colgroup><col class="c1"><col class="c2"></colgroup><tbody><tr><td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex6"></a><p class="title"><b>Figure 23.12. 7 Isobars, "rect" method <code class="uri"><a class="uri" href="example_src/contour2_ex6.html" target="_top">(<code class="filename">contour2_ex6.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex6.png" alt='7 Isobars, "rect" method (contour2_ex6.php)'></span> </div></div><br class="figure-break">
|
|||
|
</td><td>
|
|||
|
<div class="figure"><a name="fig.contour2_ex7"></a><p class="title"><b>Figure 23.13. 7 Isobars, "tri" method <code class="uri"><a class="uri" href="example_src/contour2_ex7.html" target="_top">(<code class="filename">contour2_ex7.php</code>)</a></code> </b></p><div class="figure-contents"> <span class="inlinemediaobject"><img src="images/contour2_ex7.png" alt='7 Isobars, "tri" method (contour2_ex7.php)'></span> </div></div><br class="figure-break">
|
|||
|
</td></tr></tbody></table>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
<p>As can be seen in this case the triangular method favour elongated contours from
|
|||
|
southwest to northeast while the rectangular method favours circular contours. </p>
|
|||
|
<p>The way to choose what method to use is by the method</p>
|
|||
|
<p>
|
|||
|
</p><div class="itemizedlist"><ul class="itemizedlist" type="disc"><li class="listitem">
|
|||
|
<p><code class="code">FilledContourPlot::SetMethod($aMethod)</code>
|
|||
|
</p>
|
|||
|
<p>The possible options for <code class="code">$aMethod</code> are</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem">
|
|||
|
<p>"rect" - Rectangualr algortihm (default)</p>
|
|||
|
</li><li class="listitem">
|
|||
|
<p>"tri" - Triangular algorithm</p>
|
|||
|
</li></ol></div>
|
|||
|
</li></ul></div><p>
|
|||
|
</p>
|
|||
|
<p>
|
|||
|
</p><div class="tip" title="Tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Tip</h3>
|
|||
|
<p>It is possible to show the triangulation used by calling the method
|
|||
|
<code class="code">FilledContourPlot::ShowTriangulation($aFlg)</code>. In the two
|
|||
|
figures below the triangulation for the "rect" and "tri" method in the
|
|||
|
previous examples are shown.</p>
|
|||
|
<p>
|
|||
|
<table xmlns="" frame="void" id="id2595547">
|
|||
|
<tbody xmlns="">
|
|||
|
<tr>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="id2595567"></a><p class="title"><b>Figure 23.14. Rectangular sub-division</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/contour_rectang.png" alt="Rectangular sub-division"></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
<td>
|
|||
|
<div class="figure"><a name="id2595593"></a><p class="title"><b>Figure 23.15. Triangular sub-division</b></p><div class="figure-contents">
|
|||
|
|
|||
|
<div class="mediaobject"><img src="images/contour_triangulation.png" alt="Triangular sub-division"></div>
|
|||
|
</div></div><br class="figure-break">
|
|||
|
</td>
|
|||
|
</tr>
|
|||
|
</tbody>
|
|||
|
</table>
|
|||
|
</p>
|
|||
|
</div><p>
|
|||
|
</p>
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
</div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%" align="center"><a accesskey="u" href="pt05.html">Up</a></td><td width="40%" align="right"> </td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
|